	Kota, Rajasthan GYANAM - IIT INSTITUTE	A Trusted Institute of JEE-Main Advance NEET				DPP	
J	JEE-MAIN JEE-ADVANCE NEET BOARDS						
1.	The area of the figure bounded by the curves $y = y=3- x $ is	x-1 and	(a	$3\pi a^2$	(b)	$\frac{3\pi a^2}{2}$	
3.	(a) 2 (b) 3 (c) 4 (d) 1 Area bounded by the curve $y=x \sin x$ and x-axis betwo	een x=0	(c	$\frac{3\pi a^2}{4}$	(d) None of	these	
	(a) 2π (b) 3π (c) 4π (d) None	e of these	15. Tl	the area of the region $1/3$ sq. units	$h \{(x, y) : x^2 \le$	$y \le x $ is - (b) 1/2 sq units	
4.	The area bounded by the curve $y = 2x - x^2$	and the	(u (c) 1/4 sq. units		(d) None of these	
stra	hight line $y = -x$ is given by		16. Tl	ne area bounded by	the curve x =	$a \cos^3 t$, $y = a \sin^3 t$ is	-
	(a) $9/2$ (b) $43/6$ (c) $35/6$ (d) 16	/3	(a	$3\pi a^2$	(b) $\frac{3\pi a^2}{2\pi a^2}$	¢.	
5.	The area of the region bounded by $y= x-1 $ and $y = 1$ i	s	(u	8	(0)		
6.	(a) 1 (b) 2 (c) $1/2$ (d) None of the Area of the region bounded by the curves $y = 3y_2 y_2^2 y_2 = y_1^2$ is	ese	(c	$\left(\frac{3\pi a^2}{32}\right)$	(d) $3\pi a^2$		
	y = 3x - x, y = x - x + 15 4 8		17. A	rea bounded by y =	$e^{x}, y = e^{-x}, x =$	= 1 is :	
	(a) $\frac{1}{3}$ (b) $\frac{1}{3}$		(a	$) e + \frac{1}{e} + 2$			
7	(c) $\frac{1}{2}$ (d) $\frac{1}{3}$ The area bounded by $y = y^2 + 2$ and $y = 2 y - \cos \pi y$	v is equal	(b	$) e + \frac{1}{e} - 2$			
/•	to - (a) $2/2$ (b) $8/3$ (c) $4/3$ (d) $1/3$		(c	$)e - \frac{1}{2} + 2$			
8.	The area of the figure bounded by the curves	5	(d) None of these			
	y = x - 1 and $y = 3 - x $ is -		18. A	rea of loop of curve	$y^2 = x(1 - x)^2$	is :	
9.	(a) 2 (b) 3 (c) 4 (d) None of The area bounded by the curves $y^2 = 2x + 1$ and x -	of these $y - 1 = 0$	(a	$\frac{8}{15}$ sq. units		(b) $\frac{7}{15}$ sq. units	
	is - (a) 2/3 (b) 4/3 (c) 8/3 (d) 16/3		(c	$\frac{4}{15}$ sq. units		(d) None	
10.	If the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets x-axis in A and y-	axis in B	19. Tl is	ne area enclosed by -	the curves 3x	$x^2 + 5y = 32$ and $y = x $	x - 2
	in first quadrant, then area between the arc AB and th AB of the ellipse is -	e chord	(a	$)\frac{17}{2}$	(b) $\frac{33}{2}$		
	(a) $\frac{1}{2}$ ab $(\pi + 2)$ (b) $\frac{1}{4}$ ab $(\pi - 2)$	- 2)	(c	$)\frac{23}{2}$	(d) None of	these	
	(c) $\frac{1}{4}$ ab (π - 4) (d) None of t	these	20. Tl	ne area bounded by axis and the ordinat	the curve $y =$ tes $x = -2$ and	x^3 , the $x = 1$ is -	
11.	Area of the region bounded by the curves $y = x^2 + 2$, $y = -x$, $x = 0$ and $x = 1$ is -		(a) -9	(b) - $\frac{15}{4}$		
	(a) $\frac{17}{6}$ (b) $\frac{5}{16}$		(c	$) \frac{15}{4}$	(d) $\frac{17}{4}$		
	(c) $\frac{3}{16}$ (d) None of these		Numerical Value type questions				
12.	The area bounded by $y = x e^{ x }$ and the lines $ x = 1$, (a) 4 (b) 6 (c) 1 (d) 2	y = 0 is -	21. Le	$et f(x) = min. \{x - [x]$], - x - [- x]}.	Then find value of $\int_{-\infty}^{2} f$	c (x)
13.	The area enclosed between the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is -	d	dx	.(Here [.] stands for	r G. I. F)	-2	
	(a) $\frac{8}{3}$ ab (b) $\frac{16}{3}$ ab		22. At	rea of region bound = $\frac{4-x^2}{2}$, 25 $v^2 = 9$	ed by the curve 3 and $v = \frac{3}{2}$	ves $ \mathbf{x} - \frac{6}{2}$ which contains	(1.
	(c) $\frac{4}{3}$ ab (d) None of these		0)	$4+x^2$ point in its interior	5 is given by	5	(-)
14.	Area bounded by the curve $y^2 (2a - x) = x^3$ and the line is -	ne x = $2a$		$\pi - A \tan^{-1} \frac{1}{2} - \frac{1}{B} \bigg\}$	sq. units. The	en(A+B) equals to	

DPP

- 23. Area bounded between maxima and minima of function y = x³ 3x + 4 with curve and X-axis is A. Find number of even divisors of 3A.
- 24. Two circle of radii 'a' and 'b' touching externally are inscribed in area bounded by $y = \sqrt{1-x^2}$ and x axis. If $b = \frac{1}{2}$ and a

$$=\frac{1}{k}$$
, then k is.....

25. Area bounded by curves $\sqrt{|\mathbf{x}|} + \sqrt{|\mathbf{y}|} = \sqrt{a}$ and $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{a}^2$, $\mathbf{a} > 0$ is divided by line $|\mathbf{x}| + |\mathbf{y}| = \mathbf{a}$ into two parts and ratio of area of these two parts in first quadrant is $\frac{1}{3} \left(\frac{A\pi - 2}{B\pi - 2} \right)$. Then $\mathbf{A} + \mathbf{B}$ is.....