A Trusted Institute of JEEM A initial Advance(REET)
The Solution of
$$y(2w) + a^{2}y(2x) + a^{2}d^{2}y$$

(a) $yx^{2} + a^{2} - c$ (b) $yy^{2} + a^{2} + a^{2} - c$
(c) $xy^{2} + a^{2} - c$ (d) None of these
2. Solution of $(x^{2} - 4xy - 2y^{2})dx + (y^{2} - 4xy - 2x^{2})dy = 0$ is
(a) $x^{2} + y^{2} - 6xy(x - y) = c$
(b) $x^{3} + y^{3} - 6xy(x - y) = c$
(c) $x^{3} + y^{3} - 6xy(x - y) = c$
(d) $x^{3} - y^{3} - 6xy(x - y) = c$
(e) $x^{3} + y^{3} - 6xy(x - y) = c$
(f) $x^{3} - y^{3} - 6xy(x - y) = c$
(g) $x^{3} + y^{3} - 6xy(x - y) = c$
(g) $x^{3} + y^{3} - 6xy(x - y) = c$
(g) $x^{3} + y^{3} - 6xy(x - y) = c$
(g) $x^{3} + y^{3} - 6xy(x - y) = c$
(g) $x^{3} + y^{3} - 6xy(x - y) = c$
(g) $y - \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} = 0$
3. Which of the following is a linear differential equation
(a) $\left(\frac{d^{2}y}{dx^{2}}\right)^{2} + x^{2}\left(\frac{dy}{dx}\right)^{2} = 0$
(b) $y - \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} = 0$
(c) $\frac{dy}{dx} + \frac{y}{x} = \log x$
(d) $y \frac{dx}{dx} - 4 = x$
4. The solution of the differential equation
(i) $(x - 2) = ke^{iw^{2} + iw}$
(j) $2we^{iw^{2} + y} = k^{2}$
(j) $2we^{iw^{2} + y} = k^{2}$
(k) $y = \frac{dy}{dx} + \frac{1}{\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}} = 0$
(k) $\frac{d^{2}y}{dx^{2}} - \left(\frac{dy}{dx}\right)^{3} = 0$
(k) $\frac{d^{2}y}{dx^{2}} - 0$
(k) $\frac{d^{2}y}{dx^{2}} - 0$
(k) $\frac{d^{2}y}{dx^{2}} - 0$
(k) $\frac{d^{2}y}{dx^{2}} - 0$
(k) $\frac{d^{2}y}{dx^{2}} = 0$

curve is
(a)
$$y = \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$$

(b) $y = x \tan^{-1} \left[\log \left(\frac{x}{e} \right) \right]$
(c) $y = x \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$

(d) None of these

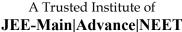
7. The equation of the curve which is such that the portion of the axis of x cut off between the origin and tangent at any point is proportional to the ordinate of that point (b is constant of proportionality)

(d) None of these

(a) $x^2 + cy^2 = constant$

(c) $kx^2 + y^2 = constant$

given by


13. The orthogonal trajectories of the family of curve $y = cx^k$ are

(b) $x^2 + ky^2 = constant$

(d) $x^2 - ky^2 = constant$

GYANAM - IIT

Kota, Rajasthan

INSTITUTE **14.** Which of the following transformation reduce the differential (d) None of these equation $\frac{dz}{dx} + \frac{z}{x} \log z = \frac{z}{x^2} (\log z)^2$ into the form $\frac{du}{dx} + P$ 22. The solution curve of $\frac{dy}{dx} = \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2}$, y(-1) = 1 is-(x) u = Q(x)?(b) $u = e^{z}$ (a) $u = \log z$ (c) $u = (\log z)^{-1}$ (d) $u = (\log z)^2$ **15.** The solution of the equation $(y + x\sqrt{xy}(x + y))dx - (y + y\sqrt{xy}(x + y))dy = 0$ is (a) $x^2 + y^2 = 2 \tan^{-1} \sqrt{\frac{y}{x}} + c$ (b) $x^2 + y^2 = 4 \tan^{-1} \sqrt{\frac{y}{v}} + c$ (c) $x^2 + y^2 = \tan^{-1} \sqrt{\frac{y}{x}} + c$

(d) None of these

16. The differential equation of all non-horizontal lines in a plane is

(a)
$$\frac{d^2 y}{dx^2} = 0$$

(b) $\frac{d^2 x}{dy^2} = 0$
(c) $\frac{dy}{dx} = 0$
(d) $\frac{dx}{dy} = 0$

17. The order of the differential equation whose general solution is given by $y = (C_1 + C_2)\sin(x + C_3) - C_4 e^{x+C_5}$ is (b) 4 (c) 2 (a) 5

18. A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$

is (a) y = 2

(d) $y = 2x^2 - 4$. c) y=2x-4 **19.** The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is (a) order 1 (b) order 2 (c) degree 3 (d) degree 4

(b) y = 2x

20. If f(x), g(x) be twice differential functions on [0,2]

satisfying
$$f''(x) = g''(x), f'(1) = 2g'(1) = 4$$
 and $f(2) = 3g(2)$
= 9, then $f(x) - g(x)$ at $x = 4$
equals.
(a) 0 (b) 10 (c) 8 (d) 2

(a) A parabola (b) Ellipse (c) Circle (d) Straight line
23. The differential equation
$$y \frac{dy}{dx} + x = k$$
 ($k \in \mathbb{R}$) represents
(a) Family of circles centered at y axis
(b) Family of circles centered at x axis
(c) Family of rectangular hyperbola's
(d) Family of parabola's whose axis is x-axis
24. The solution of $\frac{d^3y}{dx^3} - 8 \frac{d^2y}{dx^2} = 0$ satisfying
 $y(0) = 1/8$, $y_1(0) = 0$ and $y_2(0) = 1$ is -
(a) $y = \frac{1}{8} \left(\frac{e^{8x}}{8} - x + \frac{7}{8} \right)$
(b) $y = \frac{1}{8} \left(\frac{e^{8x}}{8} + x + \frac{7}{8} \right)$
(c) $y = \frac{1}{8} \left(\frac{e^{8x}}{8} + x - \frac{7}{8} \right)$
(d) None of these
25. The differential equation representing the family of hyperbola
 $a^2x^2 - b^2y^2 = c^2$ is -
(a) $\frac{y''}{y'} + \frac{y'}{y} = \frac{1}{x}$ (b) $\frac{y''}{y'} + \frac{y'}{y} = \frac{1}{x^2}$

c)
$$\frac{y''}{y'} - \frac{y'}{y} = \frac{1}{x}$$
 (d) $\frac{y''}{y'} = \frac{y}{y'} - \frac{1}{x}$

26. The differential equation of the family of hyperbolas with asymptotes as the line x + y = 1 and x - y = 1 is:

(a)
$$yy' + x = 0$$

(b) $yy' = (x - 1)$
(c) $yy'' + y' = 0$
(d) $y' + xy = 0$

27. The order of the differential equation of all tangent lines to the parabola $y = x^2$ is

(a) 1

(b) 2

28. The equation to the curve which is such that portion of the axis of x cut off between the origin and the tangent at any point is proportional to the ordinate of that point is

(c) 3

(d) 4

(a)
$$x = y (C - K \log y)$$
 (b) $\log x = Ky^2 + C$
(c) $x^2 = y (C - K \log y)$ (d) None of these
29. Solution of $(1 + e^{x/y}) dx + e^{x/y} (1 - x/y) dy = 0$ is

(a)
$$xe^{x/y} + x = c$$

(b) $ye^{x/y} - x = c$
(c) $ye^{x/y} + y = c$
(d) $ye^{x/y} + x = c$
30. If f(x) and g(x) are two solutions of the differential of

equation $ay'' + x^2 y' + y = e^x$ then f(x) - g(x) is solution of (a) $a^2 x'' + x' + y = a^x$

(a)
$$a^{2} y'' + y' + y = e^{2}$$

(b) $ay'' + y = e^{2}$
(c) $ay'' + x^{2} y' + y = 0$
(d) $y'' + x^{2} y' + y = 0$